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Abstract

Connected Autonomous Vehicle (CAV) platoons are an emergent technology that promises

increased efficiency in modern transportation infrastructure. However, the integration of

cyber-communication with physical vehicle components, combined with the need for CAVs

to integrate into a human-driver environment, creates vulnerabilities that can compromise

platoon safety. Different faults can be introduced in all layers of the platoon system or even

by impaired drivers, each requiring different fault resolution methods. Identifying the fault

class becomes a critical fault management step that facilitates the selection of the best mit-

igation strategy. This paper introduces two Multi-Head Attention (MHA) machine learning

models to perform fault classification on a set of five faults and abnormalities classes in

mixed autonomous and human-driven vehicle platoons. CAVs can face actuator faults, False

Data Injection (FDI) attacks, and Denial-of-Service (DoS) attacks, while human drivers

could exhibit abnormal distracted or drunk behaviour. The proposed MHA networks are

designed to classify faulty vehicle behaviour by identifying important time steps over long

sequences of platoon velocity profiles. The MHA networks are trained on a mixed platoon

simulation model and validated on multiple test sets containing noisy platoon velocity profile

measurements. We demonstrate that the inclusion of attention allows our MHA approach to

maintain an accuracy of 90% in high sensor noise environments, which vastly outperforms

many benchmark models that do not use attention.
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1 Introduction

Autonomous vehicle (AV) technology has long attracted research interest from a wide range

of domains for its potential to alter modern transportation systems, promising numerous

advantages in traffic safety, energy consumption, and congestion reduction compared to

traditional human-driven vehicles [3]. While autonomous driving systems such as adaptive

cruise control (ACC) and intelligent collision avoidance have been introduced in many in-

market vehicles [4], these systems are inherently limited by their inability to make optimal

decisions based on unobservable conditions of the external environment. For instance, a

sudden braking maneuver initiated at the start of a traffic chain would propagate a sequence

of rapid braking responses through the chain, resulting in unnecessary traffic slowdowns [5].

To enable greater environmental awareness, the most recent wave of development equips AVs

with wireless communication capabilities to form connected autonomous vehicles (CAVs),

in which a platoon of AVs can communicate with other connected vehicles as well as with

surrounding roadside infrastructure. As the next generation of self-driving vehicles, CAVs

are expected to further decrease traffic congestion, mitigate traffic jams, and enable efficient

route planning [6]. However, introducing communication to AVs creates a complex cyber-

physical system (CPS), which possesses a broader attack surface that leaves the system

vulnerable to both cyber-attacks and physical system faults [7]. Further, the real-world

operation of CAVs necessitates cooperation with unconnected and unpredictable human

drivers, who add additional risks to the safe operation of CAVs. It thus becomes paramount

to develop security measures that can diagnose and repair any system faults that may occur

during CAV operation.

Many methods exist to both detect and mitigate faults in CAV systems for various cyber

and physical faults. A fault detection technique can be classified as either model-based, which

detects faults by modelling the system dynamics, or process-based, which detects faults using

historical signal measurements [8]. These detection approaches are designed to be sensitive to

any form of abnormal system behaviour. On the other hand, fault mitigation techniques are

typically designed to mitigate a specific fault or abnormality class and may not be universally

applicable [9]. To bridge the gap between generalizable fault detection and fault-specific risk

mitigation approaches, fault classification is a critical task that maps a faulty CAV system

to a specific fault type, thus enabling the selection of appropriate mitigation techniques [1].

Despite its importance, few works investigate the challenge of distinguishing detected faults

in CAV platoons. There remains a research gap for an efficient fault classification mechanism

to ensure the safety and stability of CAV platoons, especially when they are coexisting with

unpredictable human-driven vehicles.
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This work contributes a new multi-head attention (MHA) network fault classification

algorithm based on transformer networks [10] for mixed human-driver and CAV platoons.

Our work considers five potential fault and abnormality types: (i) actuator faults, (ii) false

data injection (FDI), (iii) denial-of-service (DoS) attacks, (iv) distracted human drivers,

and (v) drunk human drivers. These faults are selected for their full coverage of physical

faults, cyber-communication attacks, and human driver abnormalities. We develop a platoon

simulation model for these fault and abnormality classes and extract sequences of vehicle

velocity measurements, which allows our classifier to be insensitive to the platoon model

dynamics. This dataset of velocity profiles is used to train and evaluate the MHA approach

for the classification of the five fault and abnormality classes. Our architecture is compared

with existing machine learning-based fault classification approaches from similar domains on

a test environment simulating the effect of sensor data anomalies and random external noise.

2 Literature Review

To position this work in the field of CAV security, this literature review provides an overview

of historical developments in AV technology. We emphasize the paradigm shift from AVs

to CAVs and highlight the resulting increase in the system’s vulnerability. We document

existing cyber-security methods for fault management of the CAV system, which indicates

that the fault classification task is under-examined in the current literature. To conclude, we

draw inspiration from existing fault classification approaches in related domains to motivate

the design of our proposed machine learning (ML) method.

2.1 Introduction to Autonomous Vehicles

Our modern roadways and transportation infrastructure embody an impressive feat of en-

gineering that supports millions of users each day. But as the demand for transportation

continues to grow, new strategies for expanding traffic capacity will be necessary. Beginning

in the late 1950s, autonomous vehicle (AV) technology was proposed as a solution for in-

creasing the capacity and efficiency of existing roadways [11]. Since then, research in AVs has

experienced resurgent waves of development, with the latest wave of scientific interest fueled

by the DARPA grand challenge [12] and a public announcement of research investment from

Google [5]. In 2016, automotive companies were estimated to spend over 100 billion CAD

on fostering research and development in AV technology [3]. That estimate has since grown.

Broadly, AVs are vehicular systems that are equipped with a degree of driving function

automation [5]. To enable these automated driving functions, an AV will deploy a combina-
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Table 1: Overview of the SAE International J3016 taxonomy of driving automation [2].

Level 1 represents the most basic autonomous driving systems with limited automation

capabilities, while Level 5 represents near-full automation. The highest level of automation

achieved in a vehicle thus far is Level 3.

Level Summary

0 No driving automation.

1 System controls one of lateral or longitudinal motion with driver control

over other functions.

2 System controls full vehicle motion but requires the driver to monitor the

road and supervise the automation system.

3 Sustained full control of the vehicle by the system with an expectation for

the driver to respond to requests to intervene during failures.

4 Sustained full control of the vehicle by the system in a limited set of driving

situations without expectation for the driver to respond.

5 Sustained full control of the vehicle by the system in all driving situations

without expectation for the driver to respond.

tion of sensors (e.g. camera, lidar, radar, etc.) to observe the surrounding environment, after

which a software system is used to map the input sensor data to appropriate vehicle control

actions [3]. The Society of Automotive Engineers (SAE) International defines a five-level

taxonomy [2] of an AV’s driving automation capabilities, as summarized by Table 1. While

the real-world impacts of AVs on the transportation system will vary depending on the level

of automation achieved, AVs operating at an intermediate level of automation are expected

to introduce reductions in collisions, vehicular congestion, travel time, and environmental

impact [3].

Notwithstanding the proposed benefits, AVs face critical limitations caused by an inabil-

ity to communicate with vehicles beyond the preceding vehicle. For instance, Milanes et al.

[13] observe that a purely autonomous vehicle cannot anticipate traffic shock waves caused by

sudden braking and can actually produce less stable car-following behaviour compared with

human drivers. However, when inter-vehicular communication is enabled, as is the case with

cooperative adaptive cruise control (CACC) [13], the effects of such traffic shock waves are

significantly dampened. A white paper published by Siemens [14] offers an industry perspec-

tive that further corroborates the need for connectedness in enabling AV capabilities beyond

Level 1-3 systems. Under the new “connected” paradigm, AVs communicate with their sur-

roundings in one of three main configurations: (i) vehicle-to-vehicle (V2V) communication,
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which enables cooperative traffic maneuvers; (ii) vehicle-to-infrastructure (V2I) communica-

tion, which enables advanced routing, planning, and access control; and (iii) vehicle-to-cloud

(V2C) communication, which enables connection to virtually all devices, for example, phones

carried by pedestrians [5].

This shift towards connected autonomous vehicles (CAV) represents the next generation

of AVs and offers significant improvements over regular AV technology. Shladover et al. [15]

consider a platoon of AVs in a CACC setting and measure substantial increases in traffic

lane capacity simulations at moderate to high concentrations of CACC vehicles within the

traffic composition. Ploeg et al. [16] provide empirical evidence for the reduction of traffic

congestion enabled by a CACC configuration of test passenger vehicles. They also note the

negligible effect of the non-connected ACC setting on improving traffic congestion. From a

safety perspective, Ye et al. [17] observe reductions in the frequency of dangerous situations

when CAVs are introduced to the traffic flow at even a meagre 25% adoption rate. Regarding

energy efficiency, Jin et al. [18] show that AVs consume less energy when connected with

V2V communication and can even produce energy savings in human vehicles following the

platoon. CAVs clearly possess distinct advantages over unconnected AV technology and are

thus expected to be the standard topology in future automotive markets [19].

2.2 Security Implications for Connected Autonomous Vehicles

The integration of communication protocols in CAVs advances vehicle automation capabili-

ties, but at the same time introduces new complexity to the system. The physical components

of the vehicle coupled with autonomous decision-making software and vehicular communi-

cation networks allow CAVs to be modelled as a cyber-physical system (CPS). However, the

complex nature of such systems creates a threat surface with many potential vulnerabilities

on both the physical and communication modules of CAVs [20, 21]. Pham et al. [22] conduct

a broad survey of CAV attack models, identifying a taxonomy of eight possible attack targets

whose impact spans vehicle control, environment sensing, and communication.

The range of avenues through which attacks can occur poses a serious threat to the

safe operation of various autonomous driving functions. As an example, within the context

of CACC, automated vehicles can only be considered safe and efficient if the platoon is

string stable [23], which ensures that the effects of a traffic disturbance (e.g. a sudden brak-

ing maneuver) are not amplified along the chain of vehicles within the platoon. However,

Alipour-Fanid et al. [24] show that jamming attacks, such as false data injection (FDI) [25]

and denial-of-service (DoS) [26], made to the communication channel of a CACC configu-

ration of CAV vehicles can compromise string stability and create unsafe vehicle following
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distances when the attack is conducted close to the lead vehicle of the platoon. A further

complication is introduced when we consider the need for such CAV platoons to be integrated

with human drivers during real-world deployment. Dadras et al. [27] evaluate a connected

vehicle platoon in the case of an adversarial leader vehicle and show that the platoon can

be made to oscillate at a resonant frequency with the appropriate leader vehicle movements.

If then, a malicious human driver was to assume the role of the adversarial platoon leader

vehicle, they could trigger serious collisions between the follower vehicles of the platoon.

2.3 Fault Diagnosis in Connected Autonomous Vehicles

The high safety risks stemming from CAV vulnerabilities necessitate the development of

attack counteraction solutions. While many works propose defence techniques for precluding

successful attacks [22], the complexity of the system network in CAVs makes it impossible

to proactively consider every attack case. Rather than seeking to prevent all attacks, a new

research direction considers concurrently applying intrusion/fault detection techniques that

can inform the CAV system that the system has been compromised and abnormal behaviour

is occurring [9]. Following detection, the system may then correct behaviour through various

fault mitigation techniques.

Borrowing from the literature on process fault detection, there are two prominent classes

of quantitative methods: (i) model-based, which requires an understanding of the process

dynamics, and (ii) process-based, which leverages process history data to identify abnormal

behaviour [8, 28]. From a model-based perspective, many methods rely on observer-based

controllers and parameter estimation to identify and mitigate faults. Ploeg et al. [29] use a

continuous-time equivalent Kalman filter to produce preceding vehicle acceleration estimates

in a CACC formulation. In the case that V2V communication is disturbed, these estimates

can be used to preserve platoon string stability by replacing the acceleration data originally

communicated through the network. For communication faults, Huang et al. [30] evaluate a

reliable observer-based detector to detect FDI attacks on sensor output and actuator input

signals in a CPS, on which a novel attack compensator is designed to mitigate the impact of

the attack. Petrillo et al. [31] design an adaptive synchronization-based control algorithm for

communication time delays and FDI. Biron et al. [32] consider a state estimation approach

that uses a set of observers with a delay estimator to detect when a DoS attack is occurring,

and subsequently applies the state estimate of the preceding vehicle and delay estimate

of the DoS attack to switch to a modified CACC control strategy. For actuator faults,

Zhang et al. [33] leverage a gain-scheduling observer to compare residuals between observed

and estimated steering actuator states. Guo et al. [34] present an adaptive sliding-mode
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controller to implement an improved quadratic spacing policy for CAV platoons that is

tolerant to actuator faults.

Alternatively, process-based approaches adopt a data-centric perspective to tackle the

fault detection and mitigation problem. These methods possess the advantage of general-

izability to unknown vehicle controller dynamics. A recent trend has been to use machine

learning (ML) to leverage the high volume of vehicle signal data emitted by CAVs [9]. Neu-

ral network-based observers are developed for detecting covert attacks [35] and FDI [36],

which are integrated as part of a controller that initiates a fault resolution control scheme to

adjust CACC following distance when an attack is detected. Fang et al. [37] adopt a hybrid

signal-based and model-based approach using a one-class support vector machine (SVM) as

a state fault detector and a Kalman filter as a trajectory deviation detector.

2.4 Fault Classification in Connected Autonomous Vehicles

In the existing CAV cyber-security and fault detection literature, it is assumed that the fault

class is a known prior. The corresponding fault diagnosis algorithms are hence developed for

these specific fault classes, but it is unknown whether they are universally generalizable to

additional fault types. On the other hand, fault detection methods are potent in their ability

to detect many types of abnormal system behaviour but do not often identify the source of

the abnormality [9]. To bridge the gap between fault detection and resolution, a common

intermediate task for CPS fault management processes is to introduce a fault classification

mechanism that allows a triggered detection system to select an appropriate fault resolution

method [1]. An overview of the standard fault management process is given in Figure 1.

Despite the importance of fault classification, few works examine this task in the context

of CAVs, especially in the more realistic scenario of CAVs operating alongside human drivers.

Similar to fault detection and mitigation, both model-based and signal-based solutions are

examined. From the model-based perspective, Biron et al. [38] compute combinations of

residuals from a sliding-mode observer to differentiate between velocity and range sensor

faults in CACC vehicle systems. More popular is the use of signal-based ML techniques

such as SVMs and neural networks to extract patterns from historical vehicle operation

data. These approaches have been used to classify steering actuator faults [39] and vehicle

sensor faults [40], or trajectory deviation types [37] for single autonomous vehicles. In the

domain of CAVs, Khalil et al. [41] apply an SVM on the velocity signals of a faulty CAV

platoon to differentiate between communication time delays, FDI disturbances, and physical

engine bearing knock disturbances. van Wyk et al. [42] use a convolutional neural network

(CNN) augmented with a Kalman filter to identify different types of anomalous sensor values
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Figure 1: An overview of the standard fault management pipeline [1]. A generalized fault

detection module first identifies whether abnormal system behaviour is occurring. A fault

classification module then determines the specific type of abnormal behaviour. Finally, the

appropriate fault mitigation procedure is selected based on the identified fault to restore

normal system operation.

introduced in a simulated CAV environment. Alladi et al. [43] use a combination of long

short-term memory (LSTM) networks and CNNs to distinguish between normal, faulty, and

attack behaviour in a connected vehicular network. Javed et al. [44] fuse a CNN with an

attention-based LSTM network to classify different sensor anomaly types and outperforms

the approach used in van Wyk et al. [42], demonstrating the effectiveness of attention in

identifying significant patterns that are representative of specific anomalies.

Deep learning solutions are also frequently employed for similar fault classification tasks

in adjacent CPS domains given their ability to automatically extract patterns from large

amounts of historical data. Xu et al. [45] use transfer learning to adapt a CNN model to

diagnose industrial equipment faults through the analysis of time-series signal waveforms.

Wu et al. [46] combine an LSTM with convolutional layers to perform imbalanced fault

detection using sensor measurements from industrial plant cyber-physical systems. Cui et al.

[47] show that a CNN augmented with multi-head attention learns to emphasize important

features extracted from the CNN and outperforms feedforward neural networks and basic

CNNs on an industrial system fault classification task.

From our survey of the existing literature, the fault classification problem in CAV systems
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is understudied. Additionally, should CAVs be introduced to real-world environments, these

systems will share the road with non-autonomous vehicles and must therefore account for

unpredictable human driver behaviour. Such mixed-vehicle topologies introduce nonlinear

dynamics and uncertain disturbances to CAV operation [48], which may result in fault-like

sensor signals. To our knowledge, fault classification has not yet been examined in this

mixed-vehicle platoon environment. Thus, there is a clear research gap for the development

of a fault classification methodology that can not only distinguish between faults in both

the cyber and physical layer of CAV systems, but also identify different types of abnormal

human driver behaviour.

3 Faulty Platoon Model Design

Although the proposed machine learning technique does not require knowledge of platoon

dynamics, a simulation model of the mixed vehicle platoon is required to generate training

data. Section 3.1 presents the normal, healthy operation of the platoon model, while Section

3.2 modifies the healthy platoon model with the five fault and abnormality classes considered

in this work.

3.1 Healthy Platoon Model

We consider a three-vehicle platoon model driving in a CACC configuration [13] that con-

siders the platoon longitudinal drive only, where a human driver is introduced in between

two CAVs as depicted in Figure 2. Our platoon represents the most fundamental model of

the mixed-vehicle scenario since any reordering of the vehicles removes the human driver

from the CAV platoon. Considering that fault detection techniques commonly provide fault

localization [49, 50], our platoon model is also applicable to fault management processes

enacted on a larger mixed-vehicle platoon. Preliminary detection and location could be used

to first isolate the faulty set of three vehicles as represented by our model, on which our fault

classification approach could then be applied.

3.1.1 CAV Model

For our platoon, the longitudinal drive of the CAVs is modelled as a set of brushless electric

vehicles with an internal PI controller enacting a cruise control law. Following Khalil et al.

[51], the CAV model is given by the following transfer function

Vi(s)

V ∗
i (s)

=
δis + ϵi

s3 + αis2 + βis + γi
, (1)
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Figure 2: The mixed vehicle platoon fault model under consideration. The first and third

vehicles are CAVs, while the second vehicle is human-driven. Actuator faults can occur in

the physical components of the follower CAV, while cyber attacks such as FDI and DoS can

occur in the communication link between the CAVs. Human drivers can be either distracted

or drunk.

where for both the first and third vehicles i ∈ {1, 3}, Vi is the velocity of the i-th vehicle

in the frequency domain, and V ∗
i is the desired velocity of the i-th vehicle in the frequency

domain. This model was implemented using a bond graph approach to produce realistic

CAV behaviour. αi, βi, γi, δi, and ϵi represent the transfer function coefficients configured

for the first and third vehicles i ∈ {1, 3}, with values given in Table 2.

3.1.2 Human Driver Model

For the second, human-driven vehicle, we adopt the human Intelligent Driver Model (IDM)

from Treiber et al. [52] as an idealized example of healthy driver behaviour. This model of

human driver behaviour is chosen for its frequent usage in AV literature and for the ease of

interpretability of its parameters. The healthy IDM model is given by

a2(t, v2) = amax

[
1 −

(
v2(t)

v∗2(t)

)λ

−
(
s∗2(t, v2)

s2(t)

)2
]
, (2)

where a2 is the acceleration of the human-driven vehicle (second vehicle in the platoon),

amax is the maximum acceleration, v2 and v∗2 are the measured and desired velocities of the

human-driven vehicle, respectively. λ is a constant that controls the speed of the human

response. s2 is the actual spacing distance between the first and second vehicles, and s∗2 is

the desired spacing distance and is given by

s∗2(t, v2) = s0 + max

(
0, v2(t)T +

v2(t)∆v2(t)

2
√
b∗amax

)
, (3)
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where s0 is the minimum spacing distance, T is a time constant, ∆v2(t) = v2(t) − v1(t) is

the approaching rate to the next vehicle, amax is the maximum acceleration from (2), and b∗

is the comfortable braking deceleration. The parameter values for the human-driven vehicle

are given in Table 2.

Figure 3 shows the response of the platoon in Figure 2 when no faults occur. The platoon

was constructed such that the first and third vehicles follow the model in (1), and the second

vehicle follows the model (2)-(3). The second vehicle follows the velocity of the first vehicle,

while the third vehicle follows the velocity average of the first two vehicles as a simple

approach to establish platoon velocity consensus when faults are possible [53]. Note that the

healthy human driver has a slower response compared with CAVs.

0 5 10 15 20 25

0

2

4

6

8

Figure 3: Healthy response of the three vehicles platoon in Figure 2, where the first and

third vehicles are CAVs and the second vehicle is human-driven.
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Table 2: Summary of parameter value selection in the healthy platoon model.

Model Parameter Value

αi 72.01

βi 117.9

γi 46.72

δi 28.03

ϵi 46.72

λ 8

s0 2m

T 1.5s

amax 1m/s2

b∗ 3m/s2

3.2 Fault Models

To simulate the different fault classes, we alter the healthy platoon model in Section 3.1 with

one of the following five fault classes: (i) actuator faults, (ii) false data injection (FDI), (iii)

denial-of-service (DoS) attacks, (iv) distracted human drivers, and (v) drunk human drivers.

These faults are selected for their full coverage of the physical fault, cyber-communication

attack, and human-driver abnormality classes. Fault classes (i)-(iii) impact the behaviour of

the CAVs, while abnormality types (iv) and (v) simulate impaired behaviour in the human-

driven vehicle. Only one fault is assumed to occur at a time. The following modifications

are made to the healthy platoon to simulate each of the fault classes.

(i) Actuator Fault: An actuator fault refers to a loss in the effectiveness of the third

vehicle’s motor. This fault occurs when the motor is subject to severe operating con-

ditions such as high magnetic force and different weather conditions [54]. This loss in

effectiveness results in a lower response amplitude, which is simulated by lowering the

parameter ϵ3 to a value of 41. This drops the actuator effectiveness by almost 80%.

(ii) False Data Injection: FDI attacks refer to false vehicle velocity information be-

ing transmitted through communication channels [31]. We model this fault as noise

injected in the velocity of the first vehicle that is received by the third vehicle. We

simulate this by altering the velocity used in controlling the third vehicle to ṽ1(t) =

v1(t) +ηFDI(t), where ṽ1 is the velocity of the first vehicle received by the third vehicle,

and ηFDI is injected bounded white noise.
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(iii) Denial-of-Service Attack: DoS attacks refer to malicious interference on the inter-

vehicular communication channel, which results in delayed transmission of vehicle ve-

locity information [31]. We model this fault as a time-variant communication delay in

the velocity of the first vehicle that is received by the third vehicle under a no packet

loss assumption. We alter the velocity of the first vehicle as ṽ1(t) = v1(t − τdelay(t)),

where τdelay is a normally distributed variable time delay that captures the communi-

cation latency.

(iv) Distracted Human Driver: Distracted drivers tend to exhibit delayed responses

to the external driving environment [55]. We model this abnormality as a delay in

the response λ = 5 as well as in tracking the velocity of the front vehicle v∗2(t) =

v∗2(t − τdistracted(t)), where τdistracted is a normally distributed variable time delay that

captures the delay in tracking the front vehicle.

(v) Drunk Human Driver: Drunk drivers are also considered alongside distracted

drivers to represent a more extreme version of unstable human behaviour. Following

the report published by the National Highway Safety Association [56], a moderately

drunk driver exhibits (i) a decline in visual functions, (ii) reduced coordination, (iii)

reduced ability to track moving objects, and (iv) decline in the ability to perform two

tasks at the same time and reduced response to emergencies. We model these effects

as (i) s̃∗2(t) = s∗2(t) + ηs∗(t), (ii) s̃2(t) = s2(t) + ηs(t), (iii) ṽ1(t) = v1(t− τdrunk), and (iv)

λ = 3, where s̃∗2, s̃2, ṽ1 refer to the corrupted desired spacing distance, actual spacing

distance, and first vehicle’s velocity used as the human driver’s following velocity, re-

spectively. ηs∗ , ηs are bounded white noise, and τdrunk = 2s captures a constant time

delay in tracking the front vehicle.

Figure 4 shows the responses of the mixed vehicle platoon described in Section 3.1 after

altering them with the faults and abnormalities introduced in Section 3.2. Figure 4a shows

the third vehicle’s response after altering it with the three CAV faults (i)-(iii), and Figure

4b shows the human-driven vehicle’s velocity after altering it with the two human driver

abnormalities (iv)-(v).
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Figure 4: Visualization of faulty vehicle responses under each fault class. (a) Third vehicle

response v3 in Figure 3 after emulating the faults (i)-(iii) introduced in Section 3.2, and (b)

Second vehicle velocity v2 in Figure 3 after emulating the impaired driver effects (iv)-(v)

introduced in Section 3.2. Non-faulting vehicles are omitted for visualization clarity.

4 Machine Learning Models

The mixed vehicle platoon fault model simulation allows us to extract velocity profiles for

each fault and abnormality class. To leverage this data, we take a signal-based fault classi-

fication approach by applying machine learning (ML), in particular deep learning (DL), to

learn intrinsic patterns from high volumes of labelled input data. Section 4.1 presents mul-

tiple benchmark models from similar anomaly classification tasks in the autonomous vehicle

domain. Section 4.2 introduces the motivation, architecture, and theoretical underpinning

of our novel multi-head attention network approach.

4.1 Benchmark Models

While fault classification in the context of mixed vehicle platoons has not been directly

studied in the literature, several works present ML solutions for similar classification tasks

in AV, human driver, or CAV environments. This section reviews the design of these existing

approaches and explains their implementation details.

4.1.1 Support Vector Machine

The Support Vector Machines (SVM) is a traditional supervised machine learning method

designed for binary classification tasks [57]. The SVM applies a kernel function to transform

input vectors to a higher dimensional space, after which it computes an optimal hyperplane

that forms a linear decision boundary between the two classes in the higher dimensional

space. The optimal hyperplane is one that maximizes its margin (i.e. distance) between
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Figure 5: The SVM classifier benchmark model.

vectors of either class. The vectors that lie on this margin are known as support vectors,

from which the SVM method derives its name. In the case that the training data used to form

the decision boundary is not fully linearly separable, a soft-margin hyperplane can instead

be derived to minimize the number of erroneously classified vectors. In both forms, the

parameters of the optimal hyperplane are computed using quadratic programming methods.

Burges [58] provides an excellent in-depth discussion of SVM concepts.

For the multi-class classification problem, SVMs can also be applied by learning a unique

decision boundary for each class. Shi et al. [39] apply such an approach for fault diagnosis

of steering actuator faults in autonomous vehicles. We adopt a similar methodology as a

benchmark model for our mixed vehicle platoon fault classification task, given in Figure

5. Each velocity vector vi ∈ Rn for all vehicles i ∈ {1, 2, 3} is concatenated to form an

input vector of dimension R3n. These input vectors are then used to compute the decision

boundaries for the SVM classifier. The SVM classifier uses a radial basis function kernel and

includes an L2 regularization term to reduce overfitting.

4.1.2 Multi-Layer Perceptron with Time-Domain Features

The multi-layer perceptron (MLP) is a fundamental class of machine learning model consist-

ing of multiple layers of fully connected neurons, where each layer of neurons apply a linear

transformation Wx+b to an input vector x, with W and b corresponding to a weight param-

eter matrix and bias parameter vector respectively. Typically, these network parameters are

optimized through a gradient descent algorithm. These linear transformations are performed

sequentially at each layer of the vector, with a non-linear activation function (e.g. sigmoid,

ReLU) applied between each linear transformation. Together, this alternating sequence of

activations allows MLPs to learn complex non-linear patterns from input data.

Safavi et al. [40] apply a 3-layer MLP to classify between different forms of sensor faults in

an autonomous vehicle. To reduce the input sensor signals to a manageable size, the authors
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Figure 6: The MLP benchmark model.

extract a set of ten time-domain features from the input signal. The computation of these

features is given in Table 3. We borrow this methodology and extract these ten features from

the vehicle velocity profile emitted by each vehicle in our platoon, thus totalling 30 features.

These 30 features are then used to represent each data sample in our MLP benchmark model

shown in Figure 6. Between each fully-connected (FC) layer, the ReLU activation is applied

to introduce non-linearities in the network.

Table 3: Time-domain features extracted from a vehicle velocity profile x ∈ RN for the

MLP benchmark model. The i-th element of x is denoted as xi. The sample mean is denoted

as µ and the sample standard deviation is denoted as σ.

fRMS =
√

1
N

∑N
i=1 x

2
i fSRA =

(
1
N

∑N
i=1

√
|xi|

)2

fKV = 1
N

∑N
i=1

(
xi−µ
σ

)4
fSV = 1

N

∑N
i=1

(
xi−µ
σ

)3
fPPV = |x|max − |x|min fCF = |x|max

fRMS

fIF = |x|max
1
N

∑N
i=1 |xi|

fMF = |x|max

fSRA

fSF = fRMS
1
N

∑N
i=1 |xi|

fKF = fKV(
1
N

∑N
i=1

√
x2
i

)2
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4.1.3 Convolutional Neural Network

The convolutional neural network (CNN) was popularized by Krizhevsky et al. [59] for its

considerable improvement over existing methods at the time on image classification tasks, in

particular, on the ImageNet grand challenge. Eschewing the interpretability of hand-crafted

features, CNNs instead leverage huge volumes of training data and computational resources

to allow the model itself to learn to extract salient features from the data. As some of the

first “deep” networks, these networks had upwards of hundreds of thousands to millions of

learnable parameters, distributed over many layers of computation. In contrast to the fully

connected layer of MLPs, CNNs employ a small, fixed-size window known as a kernel and

convolve this kernel over a data sample. By sharing a kernel throughout the data sample,

CNNs can learn a translation-invariant feature representation for different elements of the

input data. A pooling step is also frequently used to shrink the size of the input data as

it traverses the network, which allows deeper-level layers to learn higher-order, aggregate

features of the input data. The translation-invariant property created by these convolution

and pooling layers makes CNNs a favourable choice for tasks such as image and signal

processing.

van Wyk et al. [42] use a deep CNN to detect and identify sensor anomalies in CAV. We

implement a similar network as a benchmark model by replacing the original input sensor

signal sequences with vehicle velocity profiles. The resulting model architecture is given in

Figure 7. Between each of the convolution and pooling layers, we apply the ReLU activation

function to introduce non-linearities to the network. Dropout with probability 0.1 is also

used between the two fully connected layers to reduce overfitting. Additionally, note that

the fully connected layer requires a fixed-length vector, however, our input data can consist

of a variable number of timesteps n. We address this discrepancy by introducing an average

pooling layer to aggregate the final feature representation of the third convolution layer.
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Figure 7: The CNN benchmark model.

4.1.4 LSTM Recurrent Neural Network

The recurrent neural network (RNN) is a form of neural network designed for sequence

processing tasks. The RNN consists of multiple layers of cyclically connected nodes, where

the same node is applied to compute an output for each time step of the input data sequence.

By maintaining an internal state in all network nodes at each time step, the RNN is able to

persist sequential information over the entire input data. The choice of the node for an RNN

has a large impact on the effectiveness and stability of the network. One standard selection

is the long short-term memory (LSTM) cell, which demonstrates superior performance in

memorizing information over lengthy time sequences [60].

Girma et al. [61] leverage a two-layer LSTM network to identify human driver behaviour

types given sequences of vehicle telemetrics data. Since our platoon vehicle velocity profiles

consist of a similar data format, we adopt the same LSTM-based RNN architecture for a

benchmark model, as presented in Figure 8. The input velocity data is first encoded at each

time step using the same embedding layer structure as the multi-head attention network.

Each input time step is then fed sequentially into two consecutive LSTM layers. The final
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Figure 8: The LSTM benchmark model.

LSTM output is extracted and passed to a fully connected network with a ReLU activation

function to produce fault class probabilities.

4.1.5 Multi-Stage Attention LSTM-CNN

Many custom ML architectures emerge from combining elements from these prior models

to leverage their advantageous properties on particular tasks. Javed et al. [44] take such

an approach by designing a novel multi-stage attention LSTM-CNN (MSALSTM-CNN)

architecture for sensor anomaly identification in CAVs. Their proposed approach first uses

a CNN to extract a feature map representation of the input sensor data. An LSTM layer

is then applied to learn sequential patterns in the feature map representation. Finally, a

content-based attention mechanism [62] derives a context vector from the sequential LSTM

outputs, which learns to assign scores to particular areas of the sequence based on their

significance. The MSALSTM-CNN approach is a unique example of the use of attention

for classification tasks in the context of CAV fault identification, thus we adopt it as a

benchmark model for our task, with the architecture of the network given in Figure 9.
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Figure 9: The MSALSTM-CNN benchmark model.

4.2 Multi-Head Attention Network

We introduce a new Multi-Head Attention (MHA) network for fault classification in mixed

vehicle platoon topologies. The network structure is inspired by the transformer encoder

proposed in [10], which was selected given its established performance and efficiency for long

sequence processing. The MHA network consists of a stack of scaled dot-product attention

computations that run in parallel. Each attention computation results in an independent

output, where all outputs are then transformed linearly to the expected dimension. In this

section, we provide a theoretical overview of the computation that is carried out by the MHA

network.

For the discrete-time sample k ∈ {1, . . . , n}, where n is the total number of samples, let

the platoon velocities be collected in the row vector v(k) =
[
v1(k) v2(k) v3(k)

]
∈ R3.

The goal is to identify the fault class using platoon velocities only. The MHA network is

implemented as shown in Figure 10. We will first define the core processing layers and

construct the forward computation using these layers.

4.2.1 Multi-Head Attention

Multi-head attention layers are the primary computation in the MHA network, as defined

in the function given by

Mm(X) =


A(XWQ[m]

1 , XWK[m]

1 , XW V [m]

1 )
...

A(XWQ[m]

H , XWK[m]

H , XW V [m]

H )


T

WA[m]

, (4)

where WQ[m]

h ∈ Rdmodel×dk , WK[m]

h ∈ Rdmodel×dk , and W V [m]

h ∈ Rdmodel×dv correspond to query,

key, and value projection weight matrices for attention module stack m ∈ {1, . . . ,M} and

attention head h. M denotes the total number of attention module stacks in the network.
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Figure 10: Proposed multi-head attention network architecture for mixed vehicle platoon

fault classification.

WA[m] ∈ RHdv×dmodel denotes the multi-head attention projection weight matrix for stack m.

X ∈ Rn×dmodel represents the input matrix to the multi-head attention function. The scalars

dk and dv denote the key and value projection sizes, respectively. dmodel denotes the hidden

size of the MHA network. H denotes the total number of heads in the multi-head attention

layer. We consider M , H, dmodel, dk and dv to be architectural hyperparameters that can be

tuned to control the number of parameters used in each multi-head attention layer.

The multi-head attention function in (4) computes a stack of H independent calculations

of the attention function A(Q,K, V ), which represents the scaled-dot product attention

function given by

A(Q,K, V ) = S
(

1√
dk

QKT

)
V, (5)

where Q ∈ Rn×dk , K ∈ Rn×dk , and V ∈ Rn×dv represent query, key, and value matrices. The

scaling factor of 1√
dk

is necessary to counteract the vanishing gradient effect for large values

of dk [10]. Function S(·) represents a matrix softmax function defined by

S(Z) =


σ(z1)

...

σ(zn)

 , (6)

where

σ(zi) =
1∑n

j=1 e
zij

[
ezi1 . . . ezin

]
(7)

Here, zi ∈ Rn represents the i-th row vector of an input matrix Z ∈ Rn×n, with zij

denoting the j-th element of row vector zi. σ(z) represents the vector softmax function

computed on row vector z as per (7). The matrix softmax in (6) has the effect of computing
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a probability distribution over the sequence dimension, which acts as a set of attention

weights that prioritize specific timesteps of the input sequence.

4.2.2 Fully Connected Network

A simple fully connected network (FCN) introduces a non-linear transformation to the multi-

head attention output. The network computation is captured by the function given by

Fm(X) =
(

[XW ff[m]

1 ] ⊙ 1(XW ff[m]

1 > 0)
)
W ff[m]

2 , (8)

where X ∈ Rn×dmodel denotes an input matrix. W ff[m]

1 ∈ Rdmodel×dff and W ff[m]

2 ∈ Rdff×dmodel are

the two weight parameter matrices in the FCN for attention module stack m. 1(·) denotes an

element-wise indicator function which evaluates to 1 when the condition in the expression

is true and 0 when the condition is false. ⊙ denotes the Hadamard element-wise matrix

product. Note that the expression [XW ff[m]

1 ] ⊙ 1(XW ff[m]

1 > 0) corresponds to applying the

rectified linear unit (ReLU) non-linear activation function to XW ff[m]

1 . We consider dff as an

architectural hyperparameter that can be tuned to control the number of parameters in the

FCN.

4.2.3 Residual

Residual connections are introduced to improve model stability and preserve information

from the attention layer input. The function is defined by

R(X,Z) = N (X + Z), (9)

where X ∈ Rn×dmodel denotes an input matrix and Z ∈ Rn×dmodel corresponding to some

transformed version of X (i.e., after passing X as input to the multi-head attention layer or

to the FCN). N (·) represents the layer normalization function given by

N (Y ) =
1√

σ2 + ϵ
(Y − Ȳ ) ⊙ Γ + B, (10)

where Y ∈ Rn×dmodel is an input matrix with yi,j corresponding to the element at row i,

column j. We define Ȳ ∈ Rn×dmodel as a matrix of element-wise means of Y such that

ȳi,j = µ = 1
ndmodel

∑n
i=1

∑dmodel

j=1 yi,j for all rows i, columns j in Ȳ . Note that Y − Ȳ is

equivalent to the element-wise subtraction of µ from each element in Y . We also define

σ2 = 1
ndmodel

∑n
i=1

∑dmodel

j=1 (yi,j − µ)2 as the variance of Y element-wise. ϵ is a small constant

introduced for numerical stability. Γ ∈ Rn×dmodel and B ∈ Rn×dmodel are learnable trans-

formation weight parameters that allow rescaling and recentering of the normalized matrix

[63].
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4.2.4 Sinusoidal Converter

The MHA network uses a precomputed sinusoidal signal to inject sequential information,

as per [10]. This sinusoidal signal allows the model to learn the relative positions of the

sequence without relying on slower sequential processing from RNNs. The sinusoidal signal

P ∈ Rn×dmodel is defined as

P =


p(1)

...

p(n)

 , (11)

where p(k) ∈ Rdmodel is defined with element j ∈ {1 . . . dmodel} of the row vector defined as

p(k)j =

sin ( k
10000

2j/dmodel) when j is even,

cos ( k
10000

2j/dmodel) when j is odd.
(12)

4.2.5 Forward Pass

Consider an input sequence of platoon velocities {v(k)}, where k ∈ {1, . . . , n} and v(k) ∈ R3.

The MHA network first computes a velocity embedding E0 ∈ Rn×dmodel for the platoon

velocities. We propose two types of embeddings. The first is a linear projection given by the

expression

E0 =


e0(1)

...

e0(n)

 =


v(1)

...

v(n)

WE + P, (13)

where e0(k) ∈ Rdmodel is the velocity embedding corresponding to platoon velocities v(k).

WE ∈ R3×dmodel is a weight matrix for the linear projection, and P ∈ Rn×dmodel is the sinusoidal

signal defined in (11). We name this variant of the MHA network MHA-FCN.

Alternatively, a convolution-based embedding layer can be used to prime the MHA net-

work with an input embedding sequence possessing a greater local context of surrounding
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time steps in the vehicle velocity profiles. This embedding is given by the expression

E0 =



0
...

0

v(1)
...

v(n)

0
...

0



∗KE + P, (14)

where KE ∈ Rdkernel×3×dmodel represents a stack of dmodel Rdkernel×3 kernels that are convolved

over the input sequence of platoon velocities {v(k)}, with ∗ representing the valid cross-

correlation operation. Note that the input sequence {v(k)} is padded with zeros to ensure

that the final embedding E0 remains in Rn×dmodel . Essentially, each Rdkernel×3 kernel computes

a feature map of size Rn×1. This operation is repeated, with the resulting feature maps

concatenated along the column axis to form the embedding E0 ∈ Rn×dmodel . We name this

variant of the MHA network MHA-CNN and include dkernel as an additional architectural

hyperparameter that controls the size of the kernel.

Next, for m ∈ {1, . . . ,M}, where M is the total number of attention module stacks we

define for the network, let Em ∈ Rn×dmodel denote the output of module stack m. The forward

pass computation is carried out as follows

Hm = R(Em−1,Mm(Em−1)) (15)

Em = R(Hm,Fm(Hm)), (16)

where Hm ∈ Rn×dmodel denotes the hidden state of attention stack m between the multi-

head attention layer and the FCN. Mm(·) is the multi-head attention function for attention

module stack m defined in (4), Fm(·) is the FCN for attention module stack m defined in

(8), and function R(·, ·) is the residual add-and-normalize function defined in (9).

To compute the faults and abnormalities classification, we extract the first output time

step of the final attention module stack EM as performed in [64]. We define the resulting

representation as

ē = eM(1), (17)

where eM(k) ∈ Rdmodel denotes row k of EM . The faults and abnormalities prediction proba-

bilities, ŷ ∈ R5, are then computed using a fully connected layer and softmax output function
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given by

ŷ = σ(ēWC), (18)

where WC ∈ Rdmodel×5 is a weight matrix that maps the pooled embedding ē to the five faults

and abnormalities classes. σ(·) is the softmax function (7) used to compute classification

probabilities. ŷi represents the probability that the input sequence exhibits the fault or

abnormality class indexed by i. The MHA network proposes the fault class ŷ ∈ 1, . . . , 5 with

the highest predicted probability as the fault associated with the input velocity signal, as

given by

ŷ = argmax
i∈[1,5]

ŷi, (19)

5 Model Training

In this section, we introduce the data generation process, preprocessing techniques, and

parameter optimization algorithm used to train the benchmark models and proposed MHA

network.

5.1 Data Generation

To train the machine learning network, the healthy platoon model was constructed in MAT-

LAB SimuLink with each fault class implemented individually in a separate run. The desired

velocity of the platoon was set to change randomly every 30 seconds to elicit continuous re-

sponses from the platoon vehicles. Each run is 500 seconds long with a sampling period of

1 second. From each run, we record the three vehicles’ velocities, resulting in 500 velocity

measurements for each of the three vehicles in the platoon. Overall, 5000 runs were recorded,

with 1000 runs per fault class, to form our simulation-based training dataset.

5.2 Data Preprocessing

Before training the machine learning models, the training data was normalized to improve

the stability of the training process. We applied min-max normalization to re-scale each data

sample to the range [−1, 1]. For all k ∈ {0, . . . , n}, the scaled velocity of vehicle i ∈ {1, 2, 3}
is given by

v̄i(k) = 2

(
vi(k) − |vi|min

|vi|max − |vi|min

)
− 1, (20)

where v̄i is the scaled velocity of vehicle i, and |vi|max, |vi|min are the upper and lower bounds

over the complete training dataset for the velocity signal of the i-th vehicle vi, respectively.

The min-max normalization was used rather than zero-mean feature standardization because
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Table 4: Architectural hyperparameter values for the best multi-head attention network.

Architectural Hyperparameter Variable Value

Velocity embedding size dmodel 32

Attention key & value projection size dk = dv 32

Number of attention heads H 5

FCN hidden size dff 64

Number of encoder stacks M 3

Kernel size (used in MHA-CNN) dkernel 10

mapping to a single mean and variance would misrepresent the platoon’s dynamics since the

desired platoon velocity changes randomly throughout a run.

5.3 Network Optimization

We apply 5-fold cross-validation, which splits our dataset into five non-overlapping validation

datasets each consisting of 20% of the simulation data. Cross-validation provides a better

estimate of an ML model’s generalization performance because it removes any bias towards

a particular split of the training data. For each validation fold, the remaining 80% of the

simulation data is used as a training dataset. The network parameters are learned on the

training data using a cross-entropy loss function and Adam optimization [65]. We use a batch

size of 100 and maintain default hyperparameter values for the optimizer. Each network

is trained for 150 epochs with early stopping if the validation loss does not decrease for

5 consecutive epochs, which helps to avoid overfitting the training data. For the MHA

network, a random search was conducted over 40 combinations of model architecture sizes

to optimize the network structure. Values were selected from the following sets: {16, 32, 64}
for dmodel, the velocity embedding size; {16, 32, 64} for dk, the key projection size; 1-5 for

H, the number of attention heads; {16, 32, 64} for dff , the FCN hidden size; and 1-5 for M ,

the number of attention module stacks. We also reduce the search complexity by setting

the value projection size equal to the key projection size, dv = dk. The combination with

the lowest validation loss was taken as the final network. Table 4 shows the architectural

hyperparameter values of the best MHA network that were found through random search.

Cross-entropy loss and accuracy curves on the training and validation datasets for each model

are given in Figure 12 in Appendix A.
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6 Model Validation

Although the network achieves promising results on the simulation-derived dataset, the ideal

nature of simulations may limit the network’s generalizability to real-world environments. In

this section, we introduce an experimental method to test the robustness of our ML networks

in real-world conditions and describe how performance will be compared.

6.1 Assessing Robustness to Noisy Sensor Conditions

The proposed fault classification approaches rely on measured velocity data collected from

onboard vehicle sensors. In practice, these sensors are sensitive to defects and external envi-

ronmental conditions that can introduce noise, potentially corrupting the measured velocity

data [61]. To gain a better understanding of the generalizability of the proposed fault clas-

sification approaches, we must consider the effect of increasing levels of sensor measurement

noise and evaluate its impact on model performance.

We begin by building a test dataset using the platoon simulation model. This test

dataset contains a new set of 500 runs, with 100 runs for each fault class. Critically, the

data in this test dataset is not seen by the model during training or validation, which allows

predictions to be unbiased. We then simulate sensor measurement noise as a white Gaussian

noise signal N (0, σ2) with zero mean and variance σ2. This noise is randomly distributed

at each time step and is independent of the test data. The noise is injected into the test

dataset post-normalization for each vehicle by summing the Gaussian noise vector with the

velocity measurement. Different severities of sensor measurement corruption are induced

by controlling the variance of the injected noise. We consider four distinct scenarios: (i)

σ2 = 0, representing the no noise scenario; (ii) σ2 = 0.05, representing a low noise scenario;

(iii) σ2 = 0.1, representing a high noise scenario; and (iv) σ2 = 0.2, representing a data

corruption scenario.

6.2 Performance Evaluation Methods

Two classification performance measures, accuracy and F1-score, are used to evaluate model

performance on the test dataset. Accuracy is computed at an aggregate level for all fault

classes through the expression

Accuracy =
Number of correct predictions

Total number of predictions

F1-score is computed for each class through the expression

F1 − score = 2 × Precision × Recall

Precision + Recall
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where precision is defined as

Precision =
TP

TP + FP

and recall is defined as

Recall =
TP

TP + FN

with TP representing the number of true positive predictions for a given class, FP represent-

ing the number of false positive predictions for a given class, and FN representing the number

of false negative predictions for a given class. Precision is used to assess the correctness of

a model in predicting the positive class, while recall is used to assess how comprehensive

a model is in predicting positive samples. F1-score is computed via the harmonic mean of

precision and recall, which provides a balanced measure of the precision and recall for a

model’s predictions of a given class.

For each benchmark model and MHA network, an accuracy score is computed using pre-

dictions on the test dataset from the final trained network produced by each cross-validation

fold. This results in five measurements of accuracy, on which the mean accuracy is computed

with a 95% confidence interval. Similarly, we independently compute the F1-score for each

of the fault classes. We additionally average the fault class-specific F1-scores to report a

mean F1-score over all fault classes.

7 Results and Discussion

Using the test dataset presented in Section 6, we evaluate the predictive performance of each

benchmark model, as well as both our MHA-FCN and MHA-CNN approaches. Section 7.1

presents the results of our noise injection experiment. Additionally, Section 7.2 showcases a

unique probability visualization enabled by our attention-based approach that enhances the

human interpretability of our model’s predictions.

7.1 Model Robustness to Noise Injection

We present the performance of the five benchmark models and the two proposed MHA

networks on different levels of injected noise in Tables 5-8. Across the experiment, we

observe that the addition of stronger noise results in a decrease in classification performance

for every model. The increased noise likely decreases the distinction between the fault

classes, in particular between the FDI and DoS classes. From the class-specific F1 scores,

we note that the F1 score for these two classes tends to decrease most rapidly in the higher

noise scenario. From Figure 4a, we observe that these two faults result in very similar
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responses even in the no-noise scenario, thus the addition of noise likely further obfuscates

the differences between the two fault classes. On the other hand, the actuator fault class and

drunk human driver abnormality are more easily distinguishable and retain high F1 scores

for many models, even in the sensor data corruption environment (σ2 = 0.2). We hypothesize

that the velocity profiles emitted by platoons containing a drunk driver already resemble a

noisy signal, as suggested by Figure 4b, and thus the additional noise is not misinterpreted

by the models. The actuator fault class is also unique in that it is characterized by a lower

response amplitude, as shown in Figure 4a. The addition of noise does not distort the

amplitude of the signal by a constant amount, thus the model is able to retain higher scores

in identifying the actuator fault class due to the distinctiveness of this characteristic.

At a model level, we observe individual differences in performance across the different

noise injection levels that reflect each model’s properties. The SVM approach achieves a low

mean accuracy of 62.6% on the no-noise scenario but retains a similar performance across

all levels of noise injection. Since SVMs establish a decision boundary based on a few key

support vectors, the SVM likely learns a highly generalized decision rule that allows it to

remain resilient to even noisy measurements. However, SVMs only compute convex loss

functions, which inherently restricts their hypothesis space. For the complex task of fault

classification using velocity profiles, a non-convex hypothesis space may likely find more

optimal predictive boundaries.

We see the benefits of more complex non-convex classifiers when analyzing the perfor-

mance of MLPs, CNNs, and RNNs. In the no-noise scenario, each of these benchmark models

outperforms the SVM. The MLP approach improves the accuracy to 81.8%, although the

performance may be affected by the dynamics of our vehicle platoon. Since the vehicles

change their desired velocity throughout a run, certain time-domain features which use the

sample mean will be misleading. The CNN approach performs very well and achieves a 99.3%

accuracy on the no-noise test set. The strong performance of this model can be explained by

the benefit of using convolutional kernels to aggregate data from time steps within a local

window. Since the distinguishing feature between fault classes is often the characteristics of

the vehicle responses, observing a local context may help the CNN learn to extract features

related to changes in the velocity profile over a platoon response as opposed to character-

istics of the velocity profile at some particular time step. We expect a similar performance

from the RNN model, which should learn to propagate sequence information across input

time steps. Yet, the RNN model was only able to achieve a 67.8% accuracy on average,

because the model was unable to learn any meaningful representation of the data on two of

the five cross-validation folds. This finding is represented by the wide confidence interval on

the reported accuracy. We postulate that the RNN, although designed for sequence process-
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ing, still has challenges retaining information and propagating gradient updates over highly

lengthy sequences, which in our case is 500 time steps. In fact, no learning was observed for

any of the RNN models until the data was truncated from a length of 500 to 150 time steps,

an additional pre-processing step that was mandatory only for training the RNN.

The concept of attention is designed to counteract this phenomenon of amnesia over

highly lengthy sequences in RNNs. Using attention, a model can learn to prioritize specific

time steps in its predictions by computing a set of attention weights. These attention weights

can further improve learning stability by providing short-circuit connections for gradients to

propagate to the salient time steps of the input sequence. We observe the improvement

enabled by attention in the benchmark MSALSTM-CNN model, MHA-FCN and MHA-

CNN approaches. All of these models surpass 98% prediction accuracy, which matches the

performance of the CNN. However, unlike CNN, attention-based models retain their high

performance as increasing noise is injected. While other approaches are brittle and quickly

degrade in performance with more noise, we find that the attention-based models are much

less impacted. In the heavy noise scenario with σ2 = 0.1, the MSALSTM-CNN model and

MHA-CNN model are still able to maintain greater than 90% predictive accuracy. Only

when σ2 = 0.2 does the performance of these two models decrease significantly, but even so,

they remain the top approaches among the examined models in this study. These results

suggest that the attention mechanism is effective in reducing the impact of sensor noise on

fault classification performance. By only focusing on highly informative time steps in the

input velocity profile, the attention-based models are only impacted by noise at those specific

informative time steps, whereas models without attention suffer from a compounding effect

of noise over the entire data sample since each time step is treated equally.

Among our two proposed MHA approaches, the MHA-CNN consistently outperforms the

MHA-FCN approach. By using the ability of CNNs to aggregate data from a local frame of

time steps, the MHA-CNN possesses more informative embeddings compared to the MHA-

FCN. The performance discrepancies between the MHA-FCN and MHA-CNN can likely thus

be attributed to the quality of the embedding used by the multi-head attention modules. The

MHA-FCN approach can only provide a one-to-one mapping between its attention weights

and the input velocity profile time steps, while an attention weight computed in the MHA-

CNN approach measures the importance of a particular segment of the input sequence. On

the other hand, the benchmark MSALSTM-CNN approach is able to slightly outperform

the MHA-CNN approach in all our experiments, albeit at a small performance differential.

However, the use of an LSTM network in the MSALSTM-CNN model requires the processing

of the velocity profile in sequence, whereas the MHA-CNN approach uses scaled-dot product

attention to process all time steps simultaneously [10], which enables it to train more quickly
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than the MSALSTM-CNN.

Table 5: Fault classification with σ2 = 0 noise injection.

Model Mean Accuracy Mean F1 Actuator F1 FDI F1 DoS F1 Distracted F1 Drunk F1

SVM 0.626 ± 0.020 0.627 0.924 0.424 0.388 0.439 0.960

MLP 0.818 ± 0.030 0.817 0.993 0.944 0.595 0.560 0.993

CNN 0.993 ± 0.003 0.993 1.000 0.990 0.984 0.993 0.999

RNN 0.678 ± 0.440 0.630 0.615 0.628 0.535 0.634 0.737

MSALSTM-CNN 0.996 ± 0.004 0.996 1.000 0.998 0.993 0.991 0.998

MHA-FCN 0.982 ± 0.012 0.982 0.999 0.956 0.955 0.998 1.000

MHA-CNN 0.995 ± 0.004 0.995 1.000 0.989 0.988 0.999 1.000

Table 6: Fault classification with σ2 = 0.05 noise injection.

Model Mean Accuracy Mean F1 Actuator F1 FDI F1 DoS F1 Distracted F1 Drunk F1

SVM 0.624 ± 0.023 0.626 0.921 0.419 0.392 0.437 0.961

MLP 0.375 ± 0.046 0.334 0.368 0.405 0.156 0.124 0.618

CNN 0.824 ± 0.156 0.807 0.997 0.638 0.594 0.832 0.975

RNN 0.609 ± 0.365 0.558 0.543 0.529 0.395 0.604 0.720

MSALSTM-CNN 0.987 ± 0.007 0.987 1.000 0.981 0.971 0.986 0.996

MHA-FCN 0.973 ± 0.015 0.973 0.999 0.931 0.941 0.992 1.000

MHA-CNN 0.986 ± 0.008 0.986 1.000 0.969 0.967 0.993 0.999

Table 7: Fault classification with σ2 = 0.1 noise injection.

Model Mean Accuracy Mean F1 Actuator F1 FDI F1 DoS F1 Distracted F1 Drunk F1

SVM 0.619 ± 0.013 0.625 0.911 0.414 0.396 0.441 0.963

MLP 0.296 ± 0.013 0.243 0.261 0.349 0.093 0.059 0.453

CNN 0.595 ± 0.197 0.545 0.934 0.190 0.225 0.497 0.878

RNN 0.399 ± 0.155 0.326 0.272 0.255 0.119 0.374 0.608

MSALSTM-CNN 0.921 ± 0.063 0.918 0.978 0.827 0.839 0.951 0.995

MHA-FCN 0.832 ± 0.065 0.799 0.990 0.373 0.747 0.890 0.995

MHA-CNN 0.900 ± 0.050 0.897 1.000 0.787 0.777 0.923 0.999

30



Table 8: Fault classification with σ2 = 0.2 noise injection.

Model Mean Accuracy Mean F1 Actuator F1 FDI F1 DoS F1 Distracted F1 Drunk F1

SVM 0.559 ± 0.026 0.573 0.839 0.326 0.415 0.406 0.880

MLP 0.246 ± 0.012 0.187 0.180 0.304 0.044 0.039 0.368

CNN 0.412 ± 0.177 0.342 0.574 0.047 0.106 0.255 0.728

RNN 0.228 ± 0.033 0.108 0.022 0.021 0.004 0.152 0.339

MSALSTM-CNN 0.6752 ± 0.181 0.650 0.794 0.403 0.467 0.642 0.943

MHA-FCN 0.4708 ± 0.169 0.381 0.230 0.029 0.381 0.475 0.792

MHA-CNN 0.646 ± 0.114 0.599 0.892 0.210 0.333 0.646 0.915

Figure 11: Example of a probability heatmap showing the relative strength of the attention

weights emitted by the first head of a multi-head attention calculation for each time step of

a sample velocity profile.
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7.2 Attention Probability Visualization

The MHA-FCN uses a linear projection embedding approach that allows the model to com-

pute attention weights that directly correspond to time steps in the input velocity profile.

Although this embedding type results in slightly poorer classification performance, the one-

to-one property of the attention weights enables interpretability of the MHA-FCN’s predic-

tions by a human observer. In contrast, it is more difficult to interpret the attention weights

for the MHA-CNN and MSALSTM-CNN approaches because the initial CNN embedding

layer aggregates elements of the input sequence and occludes these one-to-one relationships.

Figure 11 provides an example use case of the attention weights in the form of a prob-

ability heatmap of input time steps. From the example, we observe that for this particular

sample, the MHA-FCN model tends to prioritize time steps around large changes in desired

velocities when predicting the fault class. These larger velocity switches result in more promi-

nent differences in platoon vehicle response characteristics, so the model has likely learned

that greater amounts of information about the fault class can be extracted by observing the

platoon behaviour at these points.

8 Conclusion

Fault classification is a critical task for the safe integration of CAV technology into mod-

ern transportation infrastructure. This work presents two novel deep-learning architectures

based on multi-head attention, MHA-FCN and MHA-CNN, that can predict fault classes

in CAVs with high accuracy. We further extend the fault classification task to consider

human driver abnormalities through a mixed vehicle platoon formulation. Our approach is

thoroughly compared with existing machine learning models from similar classification tasks

in the literature. Our MHA-CNN variant achieves performance on par with current state-

of-the-art approaches but with lower computational complexity. The benefit of including

attention is also validated for real-world scenarios through a sensor noise injection exper-

iment, where it is empirically demonstrated that attention-based models remain robust in

high sensor noise environments. Further, the use of attention enables the creation of human

interpretable visualizations of model predictions. We show this by using attention weights

from the MHA-FCN model to generate a probability heatmap that clearly emphasizes im-

portant time steps used to construct the model’s fault class prediction. Given these benefits,

we encourage attention-based approaches as a gold standard for future works in CAV fault

management.

We see numerous potential real-world applications for fault classification approaches such
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as the one presented in this work. Primarily, a fault classification module could be a critical

component of an onboard dynamic fault management algorithm present in CAVs. Sensor

measurements and communication links could be used to construct the velocity profiles of

surrounding vehicles in the platoon, which would then be monitored for potential faults.

Alternatively, provided sufficient supporting infrastructure, fault classification could be used

in a roadside platoon health monitoring system that communicates with CAV platoons in

range. The responsible authorities could then be notified when a platoon exhibits certain

types of faulty behaviour. In the case of CAV platoon collisions, fault classification also

provides a method for the assignment of responsibility in automotive insurance. The sensor

measurements recorded by the black box in each vehicle prior to the collision could be

analyzed to determine the cause of the accident.

Future work is represented by validating our fault classification approach in different lab-

oratory platoon environments, jointly tackling the fault classification and detection problem

by including a healthy platoon class, exploring the fault classification problem in a multi-

class setting where multiple faults may occur simultaneously, and introducing stochastic,

time-varying effects to better simulate the real-world environment, such as through emu-

lating weather or different road conditions. These extensions to the work aim to decrease

the discrepancies between our current problem formulation and the conditions that could be

encountered during real-world deployment.
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A Model Training Curves

(a) Training curves for the MLP benchmark model.

(b) Training curves for the CNN benchmark model.
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(c) Training curves for the RNN benchmark model.

(d) Training curves for the MSALSTM-CNN benchmark model.
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(e) Training curves for the proposed MHA-FCN model.

(f) Training curves for the proposed MHA-CNN model.

Figure 12: Training and validation loss and accuracy curves for each examined machine

learning model on all five cross-validation folds. Note that the SVM is not represented

because it is not trained using a gradient descent algorithm.
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B Confusion Matrices of Model Predictions

(a) SVM predictions. (b) MLP predictions.

(c) CNN predictions. (d) RNN predictions.
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(e) MSALSTM-CNN predictions.

(f) MHA-FCN predictions.

(g) MHA-CNN predictions.

Figure 13: Confusion matrices of model predictions under the σ2 = 0 noise level. For visual

clarity, only predictions for the model trained using the first cross-validation fold are used.
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(a) SVM predictions. (b) MLP predictions.

(c) CNN predictions. (d) RNN predictions.
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(e) MSALSTM-CNN predictions.

(f) MHA-FCN predictions.

(g) MHA-CNN predictions.

Figure 14: Confusion matrices of model predictions under the σ2 = 0.05 noise level. For

visual clarity, only predictions for the model trained using the first cross-validation fold are

used.
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(a) SVM predictions. (b) MLP predictions.

(c) CNN predictions. (d) RNN predictions.
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(e) MSALSTM-CNN predictions.

(f) MHA-FCN predictions.

(g) MHA-CNN predictions.

Figure 15: Confusion matrices of model predictions under the σ2 = 0.1 noise level. For

visual clarity, only predictions for the model trained using the first cross-validation fold are

used.
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(a) SVM predictions. (b) MLP predictions.

(c) CNN predictions. (d) RNN predictions.
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(e) MSALSTM-CNN predictions.

(f) MHA-FCN predictions.

(g) MHA-CNN predictions.

Figure 16: Confusion matrices of model predictions under the σ2 = 0.2 noise level. For

visual clarity, only predictions for the model trained using the first cross-validation fold are

used.
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C Code Availability

All code used for machine learning model creation, training, and evaluation are publicly avail-

able at https://github.com/theowu23451/fault-classification-attention-network
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